Comparative Transcriptome Profiling Reveals Different Expression Patterns in Xanthomonas oryzae pv. oryzae Strains with Putative Virulence-Relevant Genes

نویسندگان

  • Fan Zhang
  • Zhenglin Du
  • Liyu Huang
  • Casiana Vera Cruz
  • Yongli Zhou
  • Zhikang Li
چکیده

Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice bacterial blight, which is a major rice disease in tropical Asian countries. An attempt has been made to investigate gene expression patterns of three Xoo strains on the minimal medium XOM2, PXO99 (P6) and PXO86 (P2) from the Philippines, and GD1358 (C5) from China, which exhibited different virulence in 30 rice varieties, with putative virulence factors using deep sequencing. In total, 4,781 transcripts were identified in this study, and 1,151 and 3,076 genes were differentially expressed when P6 was compared with P2 and with C5, respectively. Our results indicated that Xoo strains from different regions exhibited distinctly different expression patterns of putative virulence-relevant genes. Interestingly, 40 and 44 genes involved in chemotaxis and motility exhibited higher transcript alterations in C5 compared with P6 and P2, respectively. Most other genes associated with virulence, including exopolysaccharide (EPS) synthesis, Hrp genes and type III effectors, including Xanthomonas outer protein (Xop) effectors and transcription activator-like (TAL) effectors, were down-regulated in C5 compared with P6 and P2. The data were confirmed by real-time quantitative RT-PCR, tests of bacterial motility, and enzyme activity analysis of EPS and xylanase. These results highlight the complexity of Xoo and offer new avenues for improving our understanding of Xoo-rice interactions and the evolution of Xoo virulence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptome-Based Identification of Differently Expressed Genes from Xanthomonas oryzae pv. oryzae Strains Exhibiting Different Virulence in Rice Varieties

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB) in rice (Oryza sativa L.). In this study, we investigated the genome-wide transcription patterns of two Xoo strains (KACC10331 and HB1009), which showed different virulence patterns against eight rice cultivars, including IRBB21 (carrying Xa21). In total, 743 genes showed a significant change (p-value < 0.001 in t-tests) in their ...

متن کامل

The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence.

The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type one system-secreted molecule, AvrXA21. X. oryzae pv. oryzae requires a regulatory two-component system (TCS) called RaxRH to regulate expression of eight rax (required for AvrXA21 activity) genes and to sense population cell density. To identify other key components in th...

متن کامل

Global Transcriptome Profiling of Xanthomonas oryzae pv. oryzae under in planta Growth and in vitro Culture Conditions

Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial blight, is a major threat to rice productivity. Here, we performed RNA-Seq based transcriptomic analysis of Xoo transcripts isolated under in planta growth (on both susceptible and resistant hosts) and in vitro culture conditions. Our in planta extraction method resulted in successful enrichment of Xoo cells and provided RNA ...

متن کامل

Molecular determinants of disease and resistance in interactions of Xanthomonas oryzae pv. oryzae and rice.

Xanthomonas oryzae pv. oryzae is the causal agent of rice bacterial blight disease. Numerous genes critical for virulence have been identified. This article reviews current knowledge on the molecular mechanisms of X. oryzae pv. oryzae virulence.

متن کامل

Evolution of Transcription Activator-Like Effectors in Xanthomonas oryzae

Transcription activator-like effectors (TALEs) are secreted by plant-pathogenic Xanthomonas bacteria into plant cells where they act as transcriptional activators and, hence, are major drivers in reprogramming the plant for the benefit of the pathogen. TALEs possess a highly repetitive DNA-binding domain of typically 34 amino acid (AA) tandem repeats, where AA 12 and 13, termed repeat variable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013